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At the National Library of Medicine (NLM), a variety 
of biomedical vocabularies are found in data perti­
nent to its mission. In addition to standard medical 
terminology, there are specialized vocabularies 
including that of chemical nomenclature. Normal lan­
guage tools including the lexically based ones used by 
the Unified Medical Language System® (UMLS®) to  
manipulate and normalize text do not work well on 
chemical nomenclature. In order to improve NLM's 
capabilit ies in chemical text processing, two 
approaches to the problem of recognizing chemical 
nomenclature were explored. The first approach was a 
lexical one and consisted of analyzing text for the 
presence of a fixed set of chemical segments. The 
approach was extended with general chemical pat­
terns and also with terms from NLM’s indexing 
vocabulary, MeSH®, and the NLM SPECIALIST™ 
lexicon. The second approach applied Bayesian clas­
sification to n-grams of text via two different methods. 
The single lexical method and two statistical methods 
were tested against data from the 1999 UMLS Meta-
thesaurus®. One of the statistical methods had an 
overall classification accuracy of 97%.

  INTRODUCTION 

Chemical nomenclature is used to represent a chemi­
cal concept in text. Systematic nomenclature is highly 
conjunctive, in that a single unbroken string can con­
tain multiple concepts. Programs to un-embed impor­
tant chemical concepts were originally developed for 
printed indexes1. This concept was extended later to 
online nomenclature retrieval, using a new algorithm2. 
Recently a method to detect chemical names in 
SGML patent text using segments and statistical 
methods has been described3. 

The UMLS Metathesaurus contains over 350,000 
chemical English terms represented by a variety of 
types of nomenclature. There are systematic names 
such as 1,2-dimethoxyethane, which describe the 
chemical structure, as well as generic drug names 

such as zidovudine, trade names such as Maximum 
Strength Bayer Aspirin Caplets, company codes such 
as SKF-98625, and formulations such as Zovirax 
250mg i-v infusion (pdr for recon). 

The Natural Language Systems (NLS) program at 
NLM has produced a variety of tools which process 
text. These tools include Lexical Variant Generator 
(LVG)4 which allows abstracting away from lexical 
variation and MetaMap5 which maps free text to con­
cepts in the Metathesaurus. The tools are oriented 
toward standard medical terminology and do not han­
dle the manipulation of chemical names well. Con­
sider the text … the effect of the adenosine receptor 
agonist 5’-(N-ethylcarboxamido)adenosine (NECA) 
…. MetaMap fragments the chemical into three 
phrases, 5’-, (N-ethylcarboxamido and )adenosine 
because of the embedded parentheses. The fragmenta­
tion prevents adequate search for matching concepts 
in the Metathesaurus. Even if the fragmentation were 
prevented, matching would be difficult because the 
closest Metathesaurus string to the text is 5’-N-Ethyl-
carboxamidoadenosine which has no parentheses. 
The presence of the acronym NECA in the text facili­
tates mapping since NECA does occur in the Meta-
thesaurus, but proper handling of the full chemical 
name is still required. 

NLS projects have begun collaborative efforts to 
improve the treatment of chemicals. The long-term 
goal is to correctly classify chemical terms occurring 
in text for use in phrase extraction, indexing (of both 
Metathesaurus concepts and bibliographic citations), 
synonym recognition and other text analysis applica­
tions. The immediate goal is to automatically recog­
nize chemical terms in order to avoid subjecting them 
to inappropriate processing. 

One approach to classifying chemical terms is based 
on the segmentation algorithms described above. The 
idea is to classify chemical terms by eliciting their 
chemical structure based on chemically meaningful 



segments. This approach requires a priori identifica­
tion of segments that might be found in chemical 
nomenclature. 

Another approach to the chemical name classification 
problem is to use naive Bayesian classifiers6,7,8. Such 
an approach has the advantage of requiring no a priori 
knowledge of chemical name characteristics. If 
selected attributes occur independently in data, a 
naive Bayesian classifier will give ideal performance. 
Of course it is possible for attributes to have strong 
interdependencies, and in that case one may obtain 
better performance from a classifier of the rule-based 
type. But our attributes are n-grams which have more 
of a soft or statistical character.

 METHODS 

The Segmentation Approach (SEG method) 
Initially, we decided to exploit the structure of chemi­
cal terms, analyzing them into their constituent chem­
ical morphemes. We established a list of chemical 
morpheme segments and used the algorithm described 
in the Registry File Basic Name Segment Dictionary2 

to analyze chemical terms into constituents. The algo­
rithm matches the longest left-most segment and pro­
ceeds across the term from left to right. If a term is 
analyzable into known chemical segment morphemes 
we can with a high level of confidence identify the 
term as a chemical term. For example Triethylamino­
propylisothiuronium is analyzed into 8 constituent 
morphemes: TRI-ETHYL-AMINO-PROPYL-ISO-
THI- URON-IUM. 

The resulting segmentation algorithm does not handle 
generic and trade names well, since they are not fully 
constructed of significant systematic chemical seg­
ments. To remedy that situation the morpheme list 
was augmented with a list of biomedically significant 
segments an example of which is the segment stig­
mast representing the systematic parent of the Sito­
sterol class. The resulting list consists of 3,724 
morpheme segments. We also created a supplemental 
list of chemical terms from 84,453 single-word MeSH 
chemical terms. In addition, pattern matching with 
regular expressions was used to identify recurring pat­
terns such as numerical locants. These modifications 
allowed us to handle semi-systematic names such as 
3’,5’-dichloromethotrexate where 3',5' is a locant pat­
tern, di and chloro are systematic segments, and meth­
otrexate is a generic drug name from MeSH. Pattern 
matching was also used to identify dosage and mea­
surement patterns and other possibly nonchemical 
constituents of terms. A variety of other heuristics 
have been used as well. For example we have aug­
mented the approach by identifying constituents not 

otherwise classified using information from the SPE­
CIALIST lexicon in an effort to identify nonchemical 
components embedded within chemical terms. How­
ever, the lexicon also contains some chemicals which 
have been marked as such through a variety of meth­
ods. A final heuristic was added that consists of con­
sulting a small list of terms such as disease and 
syndrome which completely disqualify a term being 
considered a chemical. The result of this segmentation 
provides both a lexical analysis of chemical terms and 
the means to classify them. 

Once a term has been segmented, the segmentation 
algorithm assigns a score to each term representing 
the degree to which the term is a chemical. The scor­
ing function has three components: provenance, cohe­
siveness, and coverage. Provenance computes the 
number of known chemical segments in a term. Seg­
ments from the chemical morpheme list and its sup­
plemental lists give a term a higher provenance score. 
Certain patterns identified by regular expression 
matching also contribute to the provenance score. It is 
characteristic of chemical terms to contain internal 
punctuation. Provenance scores are therefore adjusted 
to take into account the amount of punctuation in a 
term. Cohesiveness and coverage are notions taken 
from the MetaMap algorithm5. Cohesiveness mea­
sures the maximum number of contiguous segments 
and coverage measures how many of the segments in 
a term are classifiable. The final score is (1/6 Cover­
age) + (1/6 Coherence) + (2/3 Provenance) yielding a 
value between 0 and 1. The provenance score, which 
is central to our analysis, has twice as much weight as 
coherence and coverage combined. 

The Bayesian Classifier Approach (POS and 
TOTAL methods) 
We have implemented and tested the Bayesian classi­
fier in two different forms and we will describe the 
methodology in terms of what they have in common 
and then how they differ. All implementations depend 
on two parameters. One parameter is a small positive 
integer n which must be fixed before processing 
begins. It determines the n-gram size used in produc­
ing attributes. When n has been fixed, any string STR 
in the data set is processed as follows. 

1) STR is lowercased. 

2) STR is broken into terms at spaces and these indi­
vidual terms are used to produce n-grams. Strings 
of length n+k produce k+1 overlapping n-grams, 
while any string of length n or shorter is taken as 
the only n-gram produced (for simplicity we shall 
refer to it as an n-gram even if shorter than n). All 
such n-grams are attributes of STR. 



3) The first n-gram produced from each term derived 
from STR is marked at the right end by adding the 
character ‘!’ and is included as an attribute. 

As an example suppose n = 4. Then if STR is the 
string 1-methyl MB, it has attributes: 1-me, -met, 
meth, ethy, thyl, 1-me!, mb and mb!. 

Once the attributes for all strings to be processed have 
been assigned, each attribute is assigned a weight 
based on the Bayesian formalism. Let n denote the c 
number of strings that are classed as chemical names 
in the training set and let n denote the number of 

c 
strings that are not classed as chemical names. Let s 
be an arbitrary attribute and suppose that in the train­
ing set n denotes the number of chemical name cs 
strings that have the attribute and n the number of 

cs 
nonchemical name strings that have the attribute. 
Then the weight assigned to the attribute s is given by 

w = log ( p(1 – q)) log – (q(1 – p))s 

where we define 

p = (n + δ) ⁄ (n + 2δ)cs c 
. 

q = (n + δ) ⁄ (n + 2δ)
cs c 

Here δ implements uninformed priors6 and is the sec­
ond parameter that must be set in order to define the 
Bayesian classifier. 

In addition to the parameters n and δ which must be 
chosen, we have implemented the Bayesian classifier 
in what we may call two flavors. One is just as 
described and all attributes are weighted whether they 
receive positive or negative weights. We will refer to 
this as the TOTAL method. It is important to note that 
in this approach the nonchemicals in the training set 
are just as important as the chemicals in discrimina­
tion between the two. Thus one may only expect to 
achieve top performance if the classifier is used to dis­
criminate between chemicals names and strings which 
are something like the nonchemical strings in the 
training set. Because the world of nonchemical strings 
is much larger than the world of chemical strings and 
one may not be able to give prior characterization to 
the environment in which one may wish to detect 
chemical names, we also looked at a version of the 
classifier that only allows positive weights. In this ver­
sion only the attributes that are more probable in the 
set of chemical names are weighted and all other 
attributes are given zero weight by default. In order to 
compensate somewhat for the lack of negative 
weights we treat each string as a document and the 
attributes as key terms and produce a vector length in 
the standard way employed in vector document 

retrieval9. The Bayesian score for a string is then 
divided by the vector length associated with that 
string in order to produce a final score for ranking 
purposes. This implementation we call the POS Baye­
sian classifier.

  EVALUATION 

Evaluation of the three methods was performed by 
constructing training and testing sets of both chemi­
cals and nonchemicals from the strings in the 1999 
UMLS Metathesaurus. First the set of (English) 
strings was divided into chemicals and nonchemicals 
according to semantic type. A string was considered 
to be chemical if it either had semantic type ‘Clinical 
Drug’ (a child of ‘Manufactured Object’) or was a 
descendent of ‘Chemical’ in the semantic hierarchy. 
Four semantic types below ‘Chemical’ were excluded 
because of their lack of chemical relevancy. Strings of 
type ‘Chemical Viewed Functionally’, for example, 
include Lipstick and P&S Shampoo; and ‘Immuno­
logic Factor’ strings include HLA-Cw9 antigen and 
Cryoproteins. The list of semantic types defining the 
set of chemicals follows with the excluded semantic 
types lined through: 

Chemical 
Chemical Viewed Functionally 

Pharmacologic Substance 
Antibiotic


Biomedical or Dental Material

Biologically Active Substance


Neuroreactive Substance or Biogenic Amine 
Hormone 
Enzyme 
Vitamin 
Immunologic Factor 
Receptor 

Indicator, Reagent, or Diagnostic Aid

Hazardous or Poisonous Substance


Chemical Viewed Structurally

Organic Chemical 

Nucleic Acid, Nucleoside, or Nucleotide 
Organophosphorus Compound 
Amino Acid, Peptide, or Protein 
Carbohydrate 
Lipid 

Steroid 
Eicosanoid 

Inorganic Chemical 
Element, Ion, or Isotope 

… 
Clinical Drug 

The semantically determined chemical and nonchemi­
cal sets were each randomly divided into training and 
testing sets, 2/3 for training and 1/3 for testing. This 
produced a Full Training Set and a Full Testset. The  
two statistical methods were trained using the Full 
Training Set. Because the SEG method was developed 



using the entire 1998 Metathesaurus, however, we 
created a 99 Only Testset removing strings that 
occurred in the 1998 Metathesaurus from the Full 
Testset. This ensured that the SEG method could be 
tested fairly with data it had not seen before.

  RESULTS 

All three methods produce a score for each candidate 
string and a threshold must be chosen above which a 
score is used to classify a string as a chemical.  For  
purposes of testing and comparison of methods as 
presented here, thresholds were chosen to minimize 
the overall error rate for both chemicals and nonchem­
icals. The Bayesian methods also require the setting 
of the n-gram size n and the prior confidence level δ . 
The optimal value of n was found to be 4 for the POS 
method and 7 for the TOTAL method. For both of 
these methods a δ of 0.01 proved optimal or near 
optimal and was used. 

For completeness all methods were tested against 
both the Full and 99 Only Testsets. The full testset 
contained 118,034 chemicals and 210,898 nonchemi­
cals. Each of the three methods correctly identified at 
least 84% of the chemicals and 87% of the nonchemi­
cals (see Table 1) with the TOTAL method perform-

SEG 
Method 

POS 
Method 

TOTAL 
Method 

Chem Found 99,649 103,180 113,571 
% Found 84.4% 87.4% 96.2% 
Nonchem Found 182,388 197,734 204,488 
% Found 86.5% 93.8% 97.0% 
Found Wtd. Avg. 85.7% 91.5% 96.7% 
Missed Wtd. Avg. 14.3% 8.5% 3.3% 

Table 1: Results of Full Testset 

ing significantly better than the other methods. It 
correctly identified 96% of the chemicals and 97% of 
the nonchemicals. 

Similarly, the 99 Only Testset contained 35,113 
chemicals and 44,321 nonchemicals. Each of the three 
methods correctly identified at least 84% of both the 
chemicals and nonchemicals (see Table 2) with all 

SEG 
Method 

POS 
Method 

TOTAL 
Method 

Chem Found 29,494 31,951 34,102 
% Found 84.0% 91.0% 97.1% 
Nonchem Found 37,137 40,146 42,700 
% Found 83.8% 90.6% 96.3% 
Found Wtd. Avg. 83.9% 90.8% 96.7% 
Missed Wtd. Avg. 16.1% 9.2% 3.3% 

Table 2: Results of 99 Only Testset 

three methods scoring somewhat less on nonchemi­
cals than in the Full Testset. Overall performance for 
the SEG and POS methods declined slightly, but 
TOTAL’s overall performance remained the same due 
to an increase in its performance for chemicals. The 
TOTAL method was still the overall best scoring 
method.

 DISCUSSION 

For both testsets all three classification methods pro­
vide a high level of accuracy. The TOTAL method 
clearly achieves the best results for classifying terms 
and is likely to be useful for both indexing and 
retrieval of such terms as well as detecting chemicals 
in free text. However the segmentation approach 
offers a lexical analysis of chemical terms which can 
support tasks in which chemical nomenclature is 
important. These tasks include recognizing synonyms 
of a given chemical and normalization of chemical 
terms. 

The most important observation regarding the Baye­
sian methods was that a δ of only 0.01 gave a signifi­
cant boost to performance when compared with a 
more conventional choice. The usual interpretation of 
δ is a number of prior observations so that it would 
be set to a small positive integer, frequently 16. The 
use of 0.01 has essentially no effect in the calculations 
unless either n or n is zero. If, for example cs cs 
n = 0 , it has the effect of adding the value cs 
log ( )  to the weight one would have obtained when δ
n = 1 . This abrupt change in the weight is a form cs 

of soft rule that says if an attribute is encountered that 
was never seen in a chemical, then it is probably not a 
chemical and the score should undergo a quantum 
decrease. Likewise when an attribute is observed that 
was never seen in a nonchemical in training, the score 
should undergo a quantum increase by log – ( )  .δ
With almost 1 million strings in the Metathesaurus, 
when n is 4 there are just over 440 thousand attributes 
and when n is 7 there are over 1.3 million attributes. 
Thus it is not easy to hand code all the rules that might 
be useful in distinguishing chemicals from nonchemi­
cals. The soft rules are automatically in effect in the 
Bayesian classifiers and allow for some rule like 
behavior which proves beneficial. 

Failure analysis 
The results of a preliminary failure analysis are shown 
in Table 3. The table shows the number of incorrectly 
identified chemicals and nonchemicals for each 
method together with the number of failures unique to 
the method. The last row gives the number of failures 
common to all methods. 266 chemicals were not iden­
tified as such by any method. Ninety-eight of these 



had the semantic type ‘Pharmacologic Substance’. ognize higher-order tokens of various types including 
Agents for alcohol related cognitive impairment is an author-defined acronyms and chemicals. 

Method 
Chemicals Not 

Identified 

Nonchemicals 
Identified 

as Chemicals 
Total Unique Total Unique 

SEG 5,619 4,656 7,184 5,107 
POS 3,162 1,893 4,175 1,892 
TOTAL 1,011 274 1,621 601
 All Methods 266 474 

Table 3.  Errors (99 Only Testset) 

example of such a missed chemical. Sixty-four cases 
had the semantic type ‘Organic Chemical’. Such 
organic chemicals as Jim’s juice and Devil’s Red were 
missed. Examples like these are difficult to detect 
because although they represent chemicals they do not 
have the characteristic pattern of chemical terms. 
Some of the sixty-four organic chemicals, IS 145 for 
instance, involved English words used as acronyms. 

Many of the failures of the SEG and POS methods 
were terms composed of two-, three- and four-charac-
ter segments that are acronyms and abbreviations. 
CyH-CHID is an example. 

The TOTAL method (using both positive and negative 
evidence) failed to recognize some chemical terms 
involving dosages or units of measurement such as 
CYCLOSERINE 250 MG capsule. It also failed for 
some terms such as Somnifacient that the SEG 
method retrieved because the terms appeared on one 
of the supplemental lists. 

All methods had problems identifying terms denoting 
allergies (e.g., Fludrocortisone allergy) as non chemi­
cals. Over half of the shared failures were of this vari­
ety. Terms involving complex punctuation and 
subterms which denote chemicals caused problems 
for both the SEG and POS methods. The terms AMY-
LASE.S1:CCNC:PT:SER:QN and Accid pois - petro­
leum naphtha are examples. The TOTAL method had 
less trouble with this sort of example. Terms that 
involved overdoses and terms that involved intentions 
were also missed by the SEG method. One example is 
Piracetam overdose of undetermined intent. 

Future work 
A straightforward way of taking advantage of the 
results described here is to add the TOTAL classifica­
tion method to MetaMap’s tokenization algorithm. 
This is actually being done as part of an effort to rec-

A more ambitious extension of this work is to com­
bine the strengths of the Bayesian classification and 
segmentation approaches. We believe that a combined 
approach would enhance recognition of chemical 
terms while retaining the segmentation analysis which 
has potential applications to our text analysis efforts. 
We are investigating techniques for appropriate lexi­
cal normalization of chemical terms based on seg­
mentation. We are also investigating techniques to 
discover the bounds of chemical terms so that they 
can be recognized in free text. Recognition of parent 
substituent and modifier segments of chemical terms 
within the segmentation analysis is feasible and 
should enable us to recognize synonymy between 
chemical terms.
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